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The elastic deformations of the gyroscope rotor axis with high angular velocities can have 

a considerable effect on the motion of the gyroscope. One of the first studies of the dyna- 
mics of a gyroscope with an elastic axis was carried out by Magnus [l and ‘21. The oscil- 

lations of a free gyroscope with an elastic shaft were later investigated by Maunder and 
Whipple [3 and 41. Krementulo [5] investigated the stability of motion of a gyroscope 

with allowance for the elastic properties of the rotor axis. These authors focused their 
attention on an astatic gyroscope in a universal suspension. 

The present paper concerns the dynamics of a gyroscope with an elastic axis acted on 
by gravity and by the reactions of the elastic constraints. The gyroscope is considered as 
an extended symmetric body on a weightless elastic axis; some violation of symmetry by 
eccentrically situated point masses is considered acceptable. The quasilinear differential 

equations of motion of the gyroscope model are cited. The angular velocities of the for- 

ward and reverse precessions and the trajectories of the center of mass of the symmetric 

gyroscope are determined for small angles of nutation. The forced oscillations of the 

gyroscope due to an eccentric point mass and its critical velocities are investigated. The 
dynamic characteristics of gyroscopes with elastic and absolutely rigid axes are compared. 

If the center of mass of the gyroscope lies above the point of support, there arises the 

problem of stability of the vertical rotation of the gyroscope with elastic axis in the pre- 
sence of elastic constraints. The necessary conditions for stability of the vertical rotation 

in this case are developed. The stability of an elastic top is investigated as an example. 
It is shown that the elastic deformation of the axis raises the threshold of the rotor angu- 
lar velocity below which the rotation becomes unstable. The dependence of this thresh- 
old on the moments of inertia of the top and on the elastic properties of its axis is cited. 

The model of a gyroscope adopted in the present study was chosen to make possible 
the solution of several practical problems. 

1. We represent our gyroscope in the form of a heavy symmetric absolutely solid body 
mounted on a flexible shaft of negligibly small mass (Fig. 1). The point of support 0 
of the gyroscope is fixed. The mass of the body is, m,, its polar moment of inertia is At 
and the equatorial moments of inertia with respect to the central axes are, Aa . The 
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distance 001 between the center of inertia of the mass m, and the point of support is 

2 ; the length of the elastic shaft is II. 
Neglecting the variation of the quantities 1 and It with deformation of the axis, we 

specify the position of the center of inertia of the massmtrelative to the fixed axes &, 
Ea, Es by means of two spherical coordinates, i.e. by the angles y and 0. The unit 
vectors.of the trihedron Olqsg+, of the spherical axes are denoted by Jr,, ka and k, ; 
the unit vectors of the fixed axes. &I, Ez, &a are denoted by.jtc j, and j,. The projec- 
tions of the transverse deflections U1 (a, t) and ua (s, t) of the elastic line onto the 
coordinate planes +,s,and Xfla are measured from the straight line 00, and are consid- 

ered positive if their directions are the same as those of the unit vectors k, and ks. The 
elastic constraint near the point of support 0 produces a restoring moment proportional 
to the angle between the vertical and the tangent to the elastic rotor axis at this point; 

the moment vector is perpendicular to the plane formed by the two indicated straight 

Iines. 

03 
Fig. 1 

The axis of symmetry O,y, of the gyroscope has the same direction as the tangent to 
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the elastic axis at the point a= I,; its position relative to the spherical coordinate sys- 

tem is defined by the R&al angles a and 8’; the same angles define the positions of 

the R&al axes y,, ya, ys whose unit vectors we denote by i,, iz, i,. Finally, the position 

of the trihedron of axes Oly,‘y,‘ys relative to the trihedron of R&l axes Oly,yp,ys is 
defined by the angle of proper rotation Cp. 

We assume that the complete symmetry of the gyroscope can be violated by eccentri- 
cally placed point masses; their effect on the dynamics of the gyroscope can be allowed 

for by adding the gravitational forces and the inertial forces acting on the point masses 
in their absolute motion to the loads acting on the symmetric gyroscope. 

To simplify our formulas we shall henceforth consider just one point mass ma (m&$rtI) 

with the coordinates y,’ = r, &~a’ = ya = 0. 
Bearing in mind our intention to consider the motion of the gyroscope for small angles 

of nutation, in all of the nonlinear functions we retain terms of up to the third order of 
smallness in the coordinates y, 0 and their derivatives, but only first-order terms in the 

quantities characterizing the elastic deformations of the axis. 
The acceleration ws of the center of inertia of the mass Qwithin the above degree 

of accuracy is given by 

wr = 1 (0’. + er’“) k, + 2 (7” - 2OfW - ‘/2f732) kl - I (fS + W) kS 

The angular velocity of the body is 

C4 = --‘j, -udk,+8’k2+P’ia+cp’i,=(-fcos8-ua’+cp’sinP)kl+ 

+(V+p’cosa+q~‘sinacosp)k~+(-fsinO--sina+ 

+ cp’ cos a cos p) k3 z (- a’ - f + pi + ‘/202f) k, + 

+(~+~+acp’)kz+(cp’--)k, 

The acceleration of the point mass ma is 

w2 = WI + d/d [i-J x r], r =rcoscpi, + rsinqG2 

The force P applied to the elastic axis of the gyroscope at the point 0, is 

P = mgj, - mwl -d/d [Q X m2r], m=m,+m2 

Resolving the vector P along the axes xl, 52, za and isolating the first-order terms, 

we find that within the indicated degree of accuracy 

P = P,k, -t Pzk2 + NkS U.1) 

P, = PI” + fl, p2 = Pa” -I- fat N = mg (1 + fd 

PI0 = -mg0- mW + ecp’a co9 cp + erp” sin cp 

Ps"=-rrlm - mlf + ecp3 sin cp - sg” co9 cp 

fl = mg (1/2tlr2 + 1/si)2) - mley’2, fa = mg (V/6) + m (lh, le2r”+ 2lW8’) 

fs = z/g(p+wy- 1/2 (ra + 02) + (8 / mg) sin cp (a” + r”- 2p’cp’ - 2fYq1’ - 

- q+a - @p”) + (e / mg) cos cp (p” + 8” + 2u’q’ + 2y’cp’ - pq’* + cup”) 

where the static moment of the eccentric mass e = r&r is assumed to be small. 
The projections L, and Ls on the principal axes of inertia #s and y2 of the moment 

vector’ L applied to the shaft at the point 0s are given by 
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where a,, 01, Q, and 011, 012, mll) are the projections on the axes !/I, !/a, ya of the 

angular velocities of the body m, and of the trihedron of axes osytyaya, resectively, i. e. 

wl=oll=-&‘cosp- Wsiriasinp-~r’cos8cosp+ (1.3) 

+ 7’ sin 8 co9 a sin p z - a’ - r’ + l/a~‘Oa 

sz ,=w,~=p’+8’cosa+jsin&sin8,-~p’+ 

ols=B*sinucos Q-a*sinP- 77 co9 8 sin p - f sin 8 co9 u cos p z -_rll 

h= "l,+cp* 

Projecting the moment vector L onto the axes Xl and 52, we find that at the point 
0, ‘the gyroscope shaft is acted on by the moments M1 and Ma in the planes XtXa and 
spa. These moments are given by 

K =L,cosa - L,?in a sin $ k: L2, M2 = -L, cos $ = -L1 
The momentsMs andMa are considered positive if they bend the axis in the same 

direction as do the positive forces P1 and P 2. Substituting (1.3) into (1.2) and isolating 

the first-order terms, we obtain 

Ml -Ml0 +fr, Jf2 =M," +fa (1.4) 

Ml0 = -A*(T+8”)-AA,cp’(a’+j)-egcoscp 

f. = ‘/,A,cp*r’Ba + @r’” (A, - A,) 

Ma” = - A, (a” + r”) + A,q’ (p’ + e’) - eg sin cp 

fr = ‘I, A,O”y” + (2A, - A,) Or’8 

From the equation of moments with respect to the axis ya (neglecting friction at the 

support), we obtain 

or 

A dQs 
1 dt 

- = mar x (g& - w2) is (1.5) 

(4 + w2) cp” B A, (r’e)’ + e (g0 +W) sin cp - e (gy + 2~“) cos cp 

The remaining four equations of motion can be obtained from the following self- 
evident equations valid for a weightless shaft: 

PJ + Ms - % [e + ti’ (0,oi = 0, B = 4’ (49 0 
P2l -I- M2 -x [Y c u2' (0, t)] =o, a = u2' (II, t) (1.6) 

where x is the rigidity of the elastic constraint and where the primes next to the 

uj (St 1) (i = 1, 2) denote partial derivatives with respect to S. 
The projections of the deflections UJ (s, 1) of the gyroscope shaft axis on the coordi- 

nates ~2x2 and x2x2 must satisfy the differential Eqs. 

Elui”(~,t)-_~~(s,t)=Pj(I--)+Mj for O<s<il (j=t,2) (1.7) 
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the relations 

uf(&t)=Uf(Lt)$(g- QUj’(It,j) for f1<8<l 

and the boundary conditions 

Uj(0, t) = 0, Uj(Z, t) = Uj(Z,,l) + (1- Is)Uj’(I,, t) = 0 (1.8) 

We introduce the function h given by 

(1.9) 

where ,EI is the constant bending rigidity of the shaft. Integrating Eq.(l. 7) under bound- 

ary conditions (1.8). we obtain the following expressions for the angles of inclination of 
the tangent to the elastic axis for s = 0 and J = 1r : 

Uj’(Op t)=N^‘[PjCt(~)+T’MjC,(~)J 

Uj’(l, t) = Uj’(l1, t) = IV+ [PjC, (h) + I-‘MjC( (A) ] (1.10) 

where the dimensionless coefficients CI (A) (k = 1, 2, 3, 4) are: 

s(h)=l-G [ ch At, + h (I - I,) sh AZ,], c3 (A) = 1,- s 

~~(~)=~~[i-ch~Z~-~(Z-Z~)~h~l~], c,(k)= -& (ch AZ, - 1) 

c(A) = sh II, + I(Z-Ztl)ch AtI (Lil) 

Let us expand the functions ~1’ (0, t) and it’ (I, t) in Taylor series in the parameter 

fa. Since fs is a second-order quantity in a, b, y, 8 and 6 we retain only the linear 

terms in fs in these expansions, 

%?UJ’ (0, t) = [CI b) + fad, <&)I PJ + I-’ MJ [Ca (ho) + fsdz @a)] 

W UJ’ (1, t) = 1~3 (ho) i- fs4 (ho)1 Pj -I- ~-‘MJ [CI (5) -I- fs4 Pod)] 
where, as we can readily verify, 

d, _ b dck (ho) 
2 - - ck @o), 

dho 
(k = 1, 2, 3, 4) 

Substituting the values of the angles of inclination of uJ’ (0, t) and uJ’ (I, t) into 

Eqs*(l* % we Obtain J’,“Z (1 - qct) + MI0 (1 - qce) - j& = FI 

Pa"Z(l - qcl) + M1"(i -qc,)-xy = F1 (1.12) 

mgp - c3Plo - Z%IMlo = F3 

mga- csPao - Z-lc4Mao = F, (fl=i$i) 

Here PJ’ and MJ" are linear functions of the coordinates given by Formulas (1.1) 
and (1.4); Fh are functions not containing first-order terms and given by 

FI =f1l @ICI - 1) + fsq WPr” + dzM,o) + fc (11 cz--1) 
pa =fd (VI - 1) + faq U 4h” + ddf,O) + fs ((~2 - 1) 

F3 =fics + fs GM’,O + 1” Uf,“) + I-‘f,c, 
FI = fies + fa (W’; + r1 4 M,“) + Pf ,,cc, 
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Quasilinear Eqs.( 1.5) and (1.2) describe completely the motion of a gyroscope with 
an elastic axis for small angles of nutation. We shall confine ourselves to an investiga- 
tion of the linearized equations. 

Neglecting second-order terms in Eqs. (1.5), we denote the constant angular velocity 
of the proper rotation by CO. 

Introducing the complex functions 

x=$+ia, y=e+iy 

and the dimensionless parameters 

os=-$ Al ona =- 
ml2 

we can express linearized equations of motion (1.12) as 

(1.13) 

(1.14) 

c,u%” + (c8 + ~~62) y” +, +- x + + c,y - c4002wi (5’ + y’) - z ( c8 - .s) et@’ 

- (1 - qca) a&& (5’ + Y’) = ‘f (1 - qcI - $ ‘+) efUt 

Attempting to find a solution of homogeneous system (1.15) of the form 

x = Dleivt , Y =Dz &f (1.16) 
we obtain the frequency equation 

( VW - V%!m~2) [C& - cfJ + q (czc, -qc,)] - gz-’ v2 (1 + u2 (1 - c* + 

++--rl[cl+~2(C2 -h + clc4 - CZC,)]} + k!l-‘@02@v [I -c2 + c4 + q (c4- c,+ 

+ w, - w4)] + g21-2 [I + q (1 - Cl)] = 0 

We introduce the abstract {uantities 

v,=v )/l/g, o*= C&l/g (1.17) 

and replace the coefficients Cc by their values from (1.11). By elementary transforma- 
tions we reduce the frequency equation to the form 

age4 + alye + a2v*a + agv* + a4 = 0 (1.18) 
where 

a0 = a2c-’ [9 ch 6, -c + q@ (2 - 2 chfl, + 6,shft,], a, = - o,a,,ai/ ua 

a2 = - (1 + c-’ u%chti,) -f- q (1 - @c-’ [chfl, + (6 - 9,) sh8, J - 

- c-‘uWsh8,) (1.19) 

aI) = c-1 uo26m,(ch 6, + q6 sh a,), a4 = 1 + q6c-i[ ch+, -I- (ft -9,) sh S,] 

6 =A& 61 =W1, c = sh 6, + (6 - fi,) ch 6, 

Formulas (1.19) for the coefficients of the frequency equation are simplified if (as is 
often the case) l/l, m 1, and if 

a0 = ~2 [f)ctht) - 1 + q6 (@ - 2th e/2)], a, = -w,uo2ao/u2 

a2 = -(I + u2 6 cth @). + q (I,--6cth 6 - ~282) 

aa = w,uo% (cth 6 + q+), a4 = 1 + qtkth 6 (1.20) 

The general solution of homogeneous system (1.15) is 
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4 4 

y = x Rk&(“kt++h), 

k=l k-1 

Here Vk are the natural frequencies of the system.vr, = vIk ml [v*k are the roots 

of frequency Eq.( 1.18)] and qh are the coefficients of the vibrational modes, 

qk = 

(c* f C46’) Vkl - c4cs&n?k - csg / 1 

- C,d’Vk” + C4bOVk + g / 1 

Rk and *hare real arbitrary constants which can be expressed in terms of the initial 

angles &o, PO, Yo, 00 and velocities cco*, PO’, ya’, go’ according to Formulas 

where 

b (-,)k+1 = ‘JO&A - yo’&k + fl,,As~ - ao’A,i, 

Ask ( -l))k+l =YO~R + %‘&I, + a&, + $o’h 

In Formulas (1.21) 
1 i 1 1 

(1.21) 

and Ajk are the minors of the elements of the determinant A, situated at the intersec- 

tion of the jth row and the k th column. 
Thus, the projection of the trajectory of the 

center of inertia of the symmetric gyroscope with 

elastic axis onto the horizontal plane for small 
angles of nutation is the geometric locus of the 

vector equal to the sum of four vectors.each of 
which rotates with the angular velocity VJ, (k = 
= 1, 2, 3, 4), to describe a circle of radius Rk. 

The effect of rotor axis deformation on the 

trajectory of the center of inertia of a gyropen- 
dulum can be analyzed by means of specific 

examples. Fig. 2 shows a loop of the trajectory 

of the center of inertia of a gyropendulum with- 
out an elastic constraint with a flexible shaft for 

fi =‘6, =1.5, Q = 0.75_ (30 = 0.75’)/ 3, 
0 = 0.5 (in fraction of fg/Z) under the initial 

= pa’ = ~0’. ~_f&,’ = 0; for YJich the angular 

Fig. 2 

conditions y= yo, ~o=~o=fjoo=~o 
velocities of precession from (1.18) are vt = - 1.96, v2 =- 0.55, vs = 1.00, 
VC = 2.50. A loop of the trajectory of the center of inertia of the same gyropendulum 
under the same initial conditions but with an absolutely rigid shaft appears as the broken 

curve in Fig. 2. 
The steadystate oscillations of the gyroscope due to the point mass ma can be obtained 

as particular solutions of system (1.15). Omitting terms containing a2 in the denomina- 
tor from the right sides of these equations, we obtain the perticular solutions 



(1.22) 

The coefficients cr and Ca in (1.22) can be determined from (1.11); the coefficients 

uo, a4 can be determined from (1.19); the coefficient Qz is given by 

a6 = -1 +yqcJoLQa)+ 
+ + [( 1- 6’ + iWtl) sh 6, - 6, oh 6, + ea (a,,’ - aa) sh 6, ] 

By analogy with elastic rotors we can speak of the critical velocities of gyrosystems 
at which the polynomial A, (0) is equal to zero. Let us consider in more detail the case 
where there is no elastic constraint in the system and where 1 z I,; in this case we have 

AI (w)=(ecth64) (&-~,,~)o’+[ft (boa -~2)cth6--l]gZ-‘o~+g~l-~ 

The biquadratic equation A1 (0) = 0 does not have real roots if the coefficients of 
both &and ~112 are positive or if the discriminant 

4g21-2 (uo2 - c-12) - gV[1 + 6 (boa - ~2) cthtt]2 > 0 

In the case of an elastic axis the parameter dcth 6 is greater than unity, and none of 
these conditions is fulfilled. Hence, a gyropendulum with an elastic axis cannot be free 

of critical velocities; there are two such velocities for o2 > a02 and one for ~2 < uo2. 

Let us compare the angular velocities of precession of the gyroscope with and without 
allowance for the elasticity of its axis. For simplicity we consider the massive part of 
the gyroscope rotor as a flywheel with the ratio of moments of inertia AI/A2 = 2 more- 
over, we neglect the thickness of the flywheel as compared with the length of the elastic 
weightless axis. From (1.18) and (1.19) we find that with allowance for axis elasticity 
the angular velocities of precession, V. can be determined from Eq. 

(~2 [f)cth 6 - 1 + 96 (a - 2th ‘/&)I (v” - 20x7~) - [I + uWcth6 + 

+ q (6cth6 - 1 + uW] v2g/Z + 2~201 (Beth 6 + ~92) v g/l + 

+ (1 +qf)cth6) g”/Z2 = 0 

For a gyroscope with a nondeformable axis 6 = 0, f)cth 6 = , and its angular velo- 
cities of precession ‘Va must satisfy Eq. 

(1 + aa) voz - 2ou%o -.(i + q) g/t = 0 

The angular velocity ratios V/Q depend on the dimensionless parameters 6, o, q 
and on the angular velocity o of the rotor. These relations can be represented as a two- 
parameter family of surfaces. Fig. 3 shows such a surface for the ratio of the minimal 
angular velocities of forward precession of the gyroscope for q = 5 and o = 0.5 [in 
fractions of (g/Z) ‘111. As we see from the figure, the effect of axis bending on the 

precessional velocity for these numerical values of so and o is especially significant 

intheranges 0<6<3 and O<a<l. 
It is no less interesting to compare the precessional velocity v,, of the gyroscope model 

under consideration with the natural frequencies pk of the bending oscillations of a 



similar model of a horizontal rotor. It is easy to show that the frequencies; Phare given 

by Eq. (~26~ (qe2 + 4) (p’ - 2~~~0) - 4pw* [(q@ + 1) (30’2 + 1) a- 21 + 

v/v. 
+ 24gz-kr%p ($32 + i) + 12qg22” = 0 

Fig. 4 shows the ratios V/p of 
the minimal velocities of forward 

precession of the gyroscope and 
the natural frequency of the hori- 

zontal rotor as functions of 6 
and U for the same parameter 

values ?I = 5 and 0=0.5 (g/l)“*. 
For small 6 close to zero, this 
ratio differs little from unity; it 
then increases rapidly with increas- 

ing 6, largely due to the tensile 
longitudinal forces which increase 

the bending rigidity of the gyro- 
scope shaft. This property of 

vertical rotors is exploited in 

Fig. 3 high -speed ultracentrifuges whose 

rotors are made thin and flexible. 
Even with attached components 

of relatively small mass the para- 

meter 6 assumes large values, 

and the natural frequencies PJ 

of the bending vibrations can 
sometimes be made to exceed 

the operating rpm’s. 
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2. Placing the center of mas- 

ses above the point of support , 
gives rise to the problem of sta- 
bility of vertical rotation of a 

gyroscope with an elastic axis. 
We assume that the gyroscope is 

completely symmetric (?raac 0). 
To determine the necessary 

conditions for stability of the 

Fig. 4 
vertical position of the axis of 

symmetry of the gyroscope, we 

derive the equations in variations for the steadystate solution 

a =p sy =g C&’ + =y’ =8’=0 (2.1) 

We direct the axis Og, vertically upwards (Fig. 5). To within first-order quantities 

the projections of the spherical axes of the force applied to the rotor at the point O1are 

p1. = mg0 - mlO-, P2 = mgy - mlr”, N = - mg (2.2) 

while the moments M1 and MS, bending the axis in the planes qza and z&, are 
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Ml = -Liz (p” + e”) - A,o (a’ + y'), 

M2 = - Aa (cc” + y") + A,o (/ii’ + e’) P-3) 
where o is the angular velocity of proper rotation. 

Since the longitudinal force compresses the rotor, the projections ~1 (s, f) G=i, 2) 

of the deflection of its axis on the coordinate planes z,s, and X&Ca. must satisfy not (1.5 
but rather the differential Eqs. 

Uj”(S, t)+ho’Uj(S, i)‘&[Pj(l-S)+MjJ for O<S<ll,b?=~ 

‘I, 

Fig. 5 

Integrating these Eqs. under boundary conditions (1.8). we obtain the following expres- 
sions for the angles of inclination of the elastic line at the points 8 = 0 and a = II : 
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wq’ (0, t) = Cl (6 #,) Pj + I-* Mjc2 (a, a,) (2.4) 

wq U, t) =ct (fi, @,) pj + I-’ Mfl4 @, 9,) 
where 

Cl (%%) =Wc) [cos% -(iI --6,)sint),] - 1,c,(6,61) =tI/c - 1 

ct (Wl) =(6/c) [COSfJl -(6 -&)sinttl--~],~~(f),f)l)=(~/c)(i-cos*l) 

6 =AtJ, 61 =A&, C =SiIldi + (a -61) COS61 

Let us transform Eqs.( 1.6) with the aid of Formulas ( 2.2) to (2.4) and introduce com- 
plex functions (1.13). The equations in variations for steadystate solution (2.1) are 

c*ua 5” + (c* + C@) y” + gl-ix - gz-‘csy - c&fJ*oi (5’ + y’) = 0 

(1 - qc~)a2x” + [1 + u2 - q (Cl + CT’2 cs)]y” - u&Ii (1 - tlcy) (5’ i- 

+ y’) - gl-’ y [1 - q (1 + Cl)] = 0 (i=l/_ (2.5) 

where U2, u02 and tl must be determined from (1.14). Making use of substitution(l.16) 

and introducing dimensionless quantities (1.17), we obtain the frequency Eq. 

a& + utv*s + us2)*s + UsY, + u4 - 0 @.Q 

where the constant coefficients cZ~ are given by 

a0 =[sin6, -&cos6, + q6 (2 -2cos6, -fJ6,sin6&jc-W 

a, = - 0 *ul)uo2/u2 

u2 = --1-c-w6cos6 1 - qt.+ [(l + a2 - M, + ~96~) sin 6, - f),cos~,] 

a3 = c-*uo2~ (6 cos ftI + qe2sin a,) 

a4 = -4 -f; qtbl [co& - (8 - a,) sin*%] (2.7) 

The necessary condition for stability of the vertical position of the axis of symmetry 
of the gyroscope is the realness of all four roots of Eq.(2.6). As we know, a polynomial 
of degree n has n real roots if and only if the coefficients of the leading terms of all 
n j- 1 of the Sturm series have the same sign. In the case of a quadrinomial this rule 

yields the three inequalities 
3ug --&a,>0 (2.8) 

u = e2a22 - 3a13a8 - 18uoG82 + 44uoa~a2u, - 6aou,2a, - 4aoa23 + 
+ 16u02a& > 0 

W = 4 U2 (16 aoa4 - ula8) + 4UV(a,a2 - 6 uoaa) - V2 (3u12 - 8~~2) > 0 
where 

V = u,2a2a8 - 4u0a~~t2, + 3uoa,a22 - 9a,Jac + 32 aoala2a~ - 48u02u8a, 

In fact, let us apply Euclid’s algorithm to the polynomial 

g (9 =ti+ax3+bx2+cx+d 

and to its derivative g’ (a$, each time changing the sign of the remainder. This gives us 

&!! (x1 = r @-$ (x) - i?!, (& g’ (3) = Tl (3) g1 (x) - g2 (x) 

h?l (xc) =r2 w2 (x) - gs 

We assume that the polynomial g (s) does not have multiple roots, so that ga is a 
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constant. All the roots of the polynomial g (z) are real if g, and the coefficients of the 
leading terms of the Sturm functions gt(x) and 82(z) are positive. 

Dividing 16 g (z) by g’ (z), we obtain 

gl(z)=(3u2-8b)s~+2(ub-6c)s+(a.c-~6d) 

Dividing (3~2 - a)2 g’ (z) by gr (z) we obtain 

g2 (4 =32Ax+16~ 
where 

A = a2b2 -3a% + 14abc -6.&d -4ba -i1&2$16bd 
B = a%c - 9a3d + 3ac2 $ 32abd - 4bzC - 4&d 

Finally, we divide 4 A3gl (x) by ‘/rsg, (x), to obtain 

gll = 4 A2 (I6d -uc) + 4AB (ub-6c) - B2 (3u2 -6b) 

Thus, all the roots of g (x) are real if 

3a2 - 6b > 0, A > 0, g, > 0 

In the case under consideration 

(2.9) 

a =al/ao, b =a2/ao, c =a3/ao, d =aJao 

Substituting these values of the coefficients into inequalities (2.9) and multiplying 
the first of them by a$, the second by as’ and the thrrd by a,iO, we arrive at the three 
inequalities (2. 8), which are the necessary conditions for gyroscope stability. 

3, As an example let us consider the stability of a free top with an elastic axis. By 
a “free” top we mean one which does not have an elastic constraint and the associated 
restoring moment, i.e. a top for which sl = n = 0. To simplify analysis we assume that 

lzl,. We then find from (3.7) that 

u. - a’ (i - j), us = - ln,e,l (i - /), cr, - - (i + esj), 0, = co,u*‘f, a, - - 1 (3.‘) 

where the dimensionless parameter f characterizes the relative rigidity of the axis 
and is 

f =6ctg6, 6 = ho/ = (g)Y 

6 
In the case of an absolutely rigid axis 6 = 0 

and f = i for small 9 it is convenient to expand 
f in powers of 6 , 

where& are Bernoulli numbers, 
. 

& = 1, B1 =- I/,, B, = '/a, . . . 

a8 a7 a6 
In practically important cases the parameter 

f> i/,, but remains smaller than or equal to 

Fig. 6 unity; it is therefore sufficent to investigate the 
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stability of the top in the range 0 <f Q 1. 

bet,us substitute the values of the coefficients from (3.1) into inequalities (2.8). The 

first of these is satisfied for all angular velocities 0.. In the case of the first inequality 

of (i?. 8) this is self-evident; as regards the second inequality of (2.8), the function U 

becomes a quadratic polynomial in 0.’ 

u (1 - fi-’ = 3o.‘us*f (i - fi’ + a$ (i - fi (i + 6d + 10uaf - 3fa’) 0.’ + 

+4as(1 + fJ*fl (1 -2++eV+4eY (3.2) 

which would be negative if 3fV > 1 + 60’ + 10 uaf, but, as is easy to show, the discri- 

minant of polynomial (3.2) is positive under this condition. Hence, the condition II > 0 
is fulfilled for all real values of o, in the range of variation of the parameter f under 

consideration. 
Thus, the only necessary condition for the stability of a top with an elastic axis is the 

inequality W > 0. After elementary (though cumbersome) trasformation, the function W 

turns out to be a fifth-degree polynomial in the parameter a = o.%s~ , 

I+’ (i - fi-* = 36asP (i - fl’ + 3~’ (I - fis [-8i + iO8f - f (24+36 us) + iGOpu’+ 

+ 40 pa’] + 4d(i - fi’[-(9 + 648 us) + f (9 + 873 d - 216 04) + i%ts (-204 + 

+ 9es) + f”a’ (550-9d) + 308/G - 23pus] + i6rsu’ (i - fl [-(21 t; 612 u’ + 

+ 1440’) + f (2i+ 828 a’--2i6 d) - jaoa (200 - 258 6’ + 36 e’) + pu‘ (238-36u2)+ 

+ /‘us (276+123u’) - 59j%se-20j%‘o] + 25620’ (1 + u*f) [-4 (1 + 15~’ + iZd)+ 

+ 41(1 + 21~’ + i8u’) - fau’ (23 + 48 us + 12 u’) + PO (28 + 20 u’) + 

f/w (-a + 12d) - 8f%4 + jW”j---1024 a” (1 + u*f)* (i + 4 u* - 21~9 + /~cI’)* 

With an absolutely rigid axis f = 1 and W becomes a linear function of the parame- 

ter s 
w (i - a-* = 256 CP (i + d)sz - 1024 a@ (i + us)@ 

Moreover, the third inequality of (2.8) becomes 0.O uo4 > 4 (i + ~9) . Hence,recal- 

ling (1.14) and (1.17). we obtain the familiar condition for stability of the vertical 
rotation of an absolutely rigid top 3A? > 4mgl A’s, where A,’ = ml* + A, is the 
equatorial moment of inertia of the gyroscope with respect to the point of support. 

Table 1 

#I t-1 ~,10..~,~01~,s1.1~,=n.li/l=o.5 

0.1 4.4 6.406 9.6t3 15.05 24.99 45.01 
0.2 4.6 6.8X1 IO.06 15.54 25.54 45.66 

:*t 018 $1; 7 8’51411 664 IO.!)6 88 16.S4 17 55 26.66 27 80 46 48’29 07 7.2 9:&12:81 18156 28194 49162 
a 8 

In the range of parameter values 
under investigation the equation W---O 

has just the one positive real root I,. 

Table 1 contains the values of these 
roots for various values of the parame- 
ters and a’,computed to within four / 

figures. shows the of Fig.6 dependence 
= on the for 

3 :; 

10.23 14.59 13.74 18.50 24.85 19.59 30.10 36.00 50.96 57.77 for JGr three o.o; values of 0%. parameter Below these / 

18.98 23.36 30.25 42.08 64.77 curves are the zones of unstable verti- 
cal rotation of a top with flexible axis 

(W < 0). As we see from the table and Fig. 6, the elastic deformations of the axis enlarge 
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the instability zones considerably. This effort is directly proportional to the flexibility 
of the axis. 

In conclusion we note that the model of a gyroscope considered in the present paper 
can be used in engineering dynamics, and specifically in investigating the oscillation 

of vertical rotors in the gravitational field. 

The author is grateful to M, F. Zeitman for his assistance in carrying out the present 
study. 
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